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Abstract

Android OS experiences a blazing popularity since the last few years. This

predominant platform has established itself not only in the mobile world but also in

the Internet of Things (IoT) devices. This popularity, however, comes at the expense

of security, as it has become a tempting target of malicious apps. Hence, there is an

increasing need for sophisticated, automatic, and portable malware detection solu-

tions. Reverse engineering of the Android Apps is done to extract manifest files, and

binaries, and employ state-of-the-art machine learning algorithms to efficiently detect

malwares. Existing Android malware analysis techniques can be broadly categorized

into static and dynamic analysis.

Keywords:

Android Malware,Reverse Engineering, Machine learning, Security, Research.



Chapter 1

INTRODUCTION

In this report, some of the commonly used ways to detect malwares or malicious ap-

plications in android platform with the help of Machine Learning are stated. Further,

one of the classification algorithm used in the process: Logistic Regression Classifier.

This report starts with explaining the terms necessary to understand the concept and

then covers 2 ways of malware detection which is followed by a description of the LR

algorithm and the references in the end.

1.1 MALWARE

Malware, or malicious software, is any program or file that is harmful to a computer

user. Malware includes computer viruses, worms, Trojan horses and spyware. These

malicious programs can perform a variety of functions, including stealing, encrypting

or deleting sensitive data, altering or hijacking core computing functions and mon-

itoring users’ computer activity without their permission. The point of nearly all

malwares is to make money. [11]

1.1.1 Types of android malware

• Ransomware

Type of malware that holds your device to ”ransom” by locking it down so it cant

be used until you pay the hostage-takers. Hit android in 2014. Svpeng is one

type which combined ransomware and payment-card theft. For Russians (whom

Svpeng was originally created to target) Svpeng would present a screen to input

credit card details every time a user went to Google Play, which it would then

send to the cybercriminal gang that created it. For people in the US and UK it

would present itself as the FBI, locking down the infected device for supposedly

having child pornography on it. The user would then have to pay a ‘fine’ in order

to have the device released. Svpeng also checked to see if a banking app was

1
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installed, though it is unclear what it did with that information. Russian Police

arrested Svpeng’s 25 year old creator earlier in April, after having stolen over

50 million rubles (930,000 dollars) and having infected over 350,000 Android

devices.

• Installation of apps without your consent

Some people have been opening links inside their apps without ever going to

their browser app. This is done with a component called Webview. If you

happen to be running Android 4.3 ‘Jellybean’ or lower, there is something you

need to know about.

Apparently, there is a vulnerability that allows users to click on malicious links

as they’re browsing in Webview. The vulnerability is referred to as the Universal

Cross-Site Scripting (UXSS) attack. It is letting users click on malicious links

where the attackers are able to execute malicious codes using JavaScript.

They are somehow able to get around the security that’s there to protect the

users. Once the attackers get this far, they can use the vulnerability and install

any app they want onto your device. It has been said that Google does not plan

on patching the vulnerability found in Android 4.3 and lower.

So, if you are interested in not being a target for these attackers, you should

upgrade and get the latest version of Android. This should be done as soon

as possible. Alternatively, you could simply choose not to use the Webview to

browse, and instead you can open your links in secure browsers, such as Dolphin,

Firefox, and Chrome among many others

• PowerOffHijack

It does this when you are shutting it down, letting you think your device shut

down when it’s actually being hijacked without you knowing. At this point, it

is able to do things like taking pictures, making phone calls, and whatever else

the hijackers want to, since no one is aware that anything wrong is going on.

This is different from the first malware (ransomware) discussed earlier in this

article. Android/PowerOffHijack only affects Android 5.0 and above, requiring

root access to enable it to work.

The total number of devices that have been infected, as of February 18, was

approximately 10,000. However, unless you are in the habit of shopping in

Chinese app stores, you shouldn’t worry about this kind of threats.

• Innocent apps hiding dormant malware

In February we learned that certain Android apps were giving their users more

than they bargained for. A patience/solitaire game, an IQ test, and a history

MIT, Pune . 2 Dept. of Computer Engg.
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app all sound innocent enough, don’t they? And you would never expect they

had a problem if they behaved as intended for a month before doing anything

dubious, wouldn’t you? However, each of these apps, which were downloaded

more than five million times, had code in them that would trigger popups that, if

clicked on, would lead to fake webpages, run illicit processes, or start unwanted

app installs and downloads.

Filip Chytry of Avast Antivirus sheds light on the clue that tells you if you have

this kind of malware:

Each time you unlock your device an ad is presented to you, warning you about

a problem, e.g. that your device is infected, out of date or full of porn. This, of

course, is a complete lie.

Google has suspended these apps from the Google Play Store, so as long as you

don’t download them from another source, you’ll be okay.

• Malware for Sextorsion

Cybercriminals in South Korea have created fake social media profiles of at-

tractive women to lure people into cybersex, whom they then blackmail by

threatening to release the video on YouTube.

Here’s where the malware comes in. The perpetrators are now pretending that

they experience audio problems with the chosen software (like Skype) and per-

suade their victim to download an chat app of their preference. In truth, the

chat app steals the victims contacts to send to the blackmailer. The criminal

uses the contact information to extort money more effectively by threatening to

share the video with the victim’s close friends and family.

• Android Installer Hijacking Vulnerability

Nearly 50percent of all Android devices are at risk of a vulnerability called “An-

droid Installer Hijacking”. Put simply, when you go to download a legitimate

app, the installer can be hijacked allowing an app you didn’t want to be in-

stalled in its place. This happens in the background while you are reviewing

the permissions of the app you want to install, either by setting up the benign

app to install malware later, or by masking the true permissions it requires.

This vulnerability affects third party app stores, such as the Amazon App Store.

Android devices 4.4 and higher are safe from this. [11]

1.2 MACHINE LEARNING

Machine learning is an application of artificial intelligence (AI) that provides systems

the ability to automatically learn and improve from experience without being explic-

MIT, Pune . 3 Dept. of Computer Engg.
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itly programmed. Machine learning focuses on the development of computer programs

that can access data and use it learn for themselves.

The process of learning begins with observations or data, such as examples, direct

experience, or instruction, in order to look for patterns in data and make better

decisions in the future based on the examples that we provide. The primary aim is

to allow the computers learn automatically without human intervention or assistance

and adjust actions accordingly.[12]

1.2.1 Types of Machine Learning Algorithms

• Supervised ML Algorithms

Can apply what has been learned in the past to new data using labeled examples

to predict future events. Starting from the analysis of a known training dataset,

the learning algorithm produces an inferred function to make predictions about

the output values. The system is able to provide targets for any new input

after sufficient training. The learning algorithm can also compare its output

with the correct, intended output and find errors in order to modify the model

accordingly.

• Unsupervised ML Algorithms

Are used when the information used to train is neither classified nor labeled.

Unsupervised learning studies how systems can infer a function to describe a

hidden structure from unlabeled data. The system doesn’t figure out the right

output, but it explores the data and can draw inferences from datasets to de-

scribe hidden structures from unlabeled data.

• Semi supervised ML Algorithms

Fall somewhere in between supervised and unsupervised learning, since they

use both labeled and unlabeled data for training – typically a small amount

of labeled data and a large amount of unlabeled data. The systems that use

this method are able to considerably improve learning accuracy. Usually, semi-

supervised learning is chosen when the acquired labeled data requires skilled

and relevant resources in order to train it / learn from it. Otherwise, acquiring

unlabeled data generally doesn’t require additional resources.

• Reinforcement ML Algorithms

Is a learning method that interacts with its environment by producing actions

and discovers errors or rewards. Trial and error search and delayed reward are

the most relevant characteristics of reinforcement learning. This method allows

machines and software agents to automatically determine the ideal behavior

MIT, Pune . 4 Dept. of Computer Engg.
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within a specific context in order to maximize its performance. Simple reward

feedback is required for the agent to learn which action is best; this is known as

the reinforcement signal. [12]

1.3 MALWARE DETECTION TECHNIQUES

Early detection is the most important thing to mitigate the harmful effects of malware.

Throughout the years, a number of malware detection methods has been proposed.

These can be broadly categorized into: signature-based, change-based, and anomaly-

based methods.

• Signature- based methods

A signature based intrusion method detects a malware based on its signature.

It first gathers data and analyzes it, and when a program or file has a similar

signature to an already existing malware (which it compares to from a database)

it detects it. This method is often used for detecting popular malware signatures,

but it can be quite slow since it should compare the signatures from a large

database, meaning it cannot be instant.

• Change-based methods

Change based detection is a method that identifies when changes occurred in

the system. It relies on probability distribution to detect the changes. These

techniques include, online and offline change detection techniques.

• Anomaly-based methods

In the anomaly based system, a system administrator defines the baseline, or

normal state of the network’s traffic load, breakdown, protocol, and typical

packet size. The anomaly detector monitors network segments to compare their

state to the normal baseline and look for anomalies

Up until now, virtually almost all real-world deployments of malware detection (like

virus scanners) are signature-based and change-based methods. Though efficient,

these methods are not able to identify new types of malware (such as those carry-

ing out zero-day attacks). Some research has been done on anomaly-based malware

detection, which are good at identifying new malware. However, so far the anomaly-

based methods are not widely deployed yet because of practical issues such as effi-

ciency/scalability, high false positive rate, difficulty to use, etc.[3]

MIT, Pune . 5 Dept. of Computer Engg.
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1.4 REVERSE ENGINEERING

Reverse engineering, also called back engineering, is the process of where a man-made

object is de-constructed to reveal its designs, architecture, or to extract knowledge

from the object. This process is similar to scientific research but the only difference

is that scientific research is about a natural phenomenon. Reverse engineering is

applicable in the fields of mechanical engineering, electronic engineering, software

engineering, chemical engineering, and systems biology.[13]

1.4.1 Reverse Engineering for feature-extraction

To build up an efficient Android malware detection model, it is highly desirable to col-

lect robust and most representative features such as user permissions, providers and

receiver’s information, intent filters, process name and binaries from under analysis

applications. In the proposed framework, all the mentioned features are extracted

via reverse engineering, breaking down its application APK in to simple java code

and after modification it is again converted in to an APK file. In this context, Easy

APK Disassembler is adopted to reverse engineering the applications. After reverse

engineering the Android application, features are extracted that are constant strings

from binaries and permissions, providers, receivers, intent filters, process name from

Android manifest.xml files. Constant strings are actually binaries of Android ap-

plications that exist in folder after reverse engineering of an application. Attackers

can make change in constant strings to attack a device by reverse engineering an

application. As we get source code of an application after reverse engineering pro-

cess, hackers make changes in constant strings, repack that application and upload on

play stores. If an application has constant string [const-string v1, “Rooted Device”],

malware attackers can change it to [const-string v1,“Device Not Rooted”]. Similarly,

they can attempt multiple attacks by making changes in constant strings of Android

applications. While every Android application has one manifest.xml file in which

all permissions from users are requested. Users can’t install application without ac-

cepting all requested permissions. Along with constant strings, keywords (manifest

feature) are also extracted from applications.[6]

1.5 DATASET

A data set is a collection of related, discrete items of related data that may be ac-

cessed individually or in combination or managed as a whole entity. For Malware De-

tection using Machine Learning, we need to create a dataset of benign softwares/apps

and malicious softwares/apps in order to make the machine learning classifiers learn

MIT, Pune . 6 Dept. of Computer Engg.
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and deduce by itself wether or not a software/app is a malware or not. A dataset

can be created individually by our own by putting some benign and some mali-

cious apps. Or there are various ready-made datasets available for direct usage: eg.

M0Droid,DREBIN, AndroMalShare etc.

• M0Droid

M0Droid basically is android application behavioral pattern recognition tool

which is used to identify android malwares and categorize them according to

their behavior. It utilized a kernel level hook to capture all system call re-

quests of the application and then generate a signature for the behavior of the

application.[5]

• DREBIN

The dataset contains 5,560 applications from 179 different malware families.

The samples have been collected in the period of August 2010 to October 2012

and were made available by the MobileSandbox project.

Figure 1.1: Details of a dataset

Figure 1.2: Drebin detection rate

• AndroMalShare

AndroMalShare is a project focused on sharing Android malware samples. It’s

MIT, Pune . 7 Dept. of Computer Engg.
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Figure 1.3: Analysis steps performed by Drebin

only for research, no commercial use. Present statistical information of the

samples, a detail report of each malware sample scanned by SandDroid and the

detection results by the anti-virus productions.[6]

• AMD Project

AMD contains 24,553 samples, categorized in 135 varieties among 71 malware

families ranging from 2010 to 2016. The dataset provides an up-to-date picture

of the current landscape of Android malware, and is publicly shared with the

community.[14]

1.6 CLASSIFIER

A Machine Learning algorithm/Mathematical function that maps input data to a

category is called a Classifier. An algorithm that implements classification, especially

in a concrete implementation, is known as a classifier. The term ”classifier” sometimes

also refers to the mathematical function, implemented by a classification algorithm,

that maps input data to a category.

Figure 1.4: Learning process

MIT, Pune . 8 Dept. of Computer Engg.
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Figure 1.5: Classifiers use

The output of a classifier is a class. In this case the output of the applied classifier

will be whether a given application is malicious or not(benign).[15]

MIT, Pune . 9 Dept. of Computer Engg.



Chapter 2

LITERATURE SURVEY

Table 2.1: Literature Survey

Sr.
no

Name of Paper Authors Description Algorithms used

1 Malware Detec-
tion in Android
Mobile Platform
using Machine
Learning Algo-
rithms

Mariam Al
Ali, Davor
Svetinovic,
Zeyar Aung,
Suryani Lukman
2017

A practical and effective anomaly
based malware detection frame-
work is proposed with an empha-
sis on Android mobile comput-
ing platform. A dataset consist-
ing of both benign and malicious
applications (apps) were installed
on an Android device to analyze
the behavioral patterns. Various
ML algorithms are then applied
on this dataset to classify the ap-
plication as malicious or benign.

Behavior based
techniques, LR
Classifier, KNN
Classifier, Naive
Bayes

2 Lightweight
Malware Detec-
tion based on
Machine Learn-
ing Algorithms
and the Android
Manifest File

Monica Ku-
maran and
Wenjia Li 2016

Study aims to learn if the
Android manifest file provides
enough information to classify an
app as malicious or benign. In
particular it compares the effi-
cacy of using requested permis-
sions versus inter-app intent com-
munication. It also improves
static malware detection by com-
paring and refining different ma-
chine learning algorithms on the
manifest file dataset.

Signature based
technique, LR
algorithm, Naive
Bayes, KNN,
Decision Tree
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Table 2.2: Literature Survey - continued

Sr.
no

Name of Paper Authors Description Algorithms used

3 Machine learn-
ing aided An-
droid malware
classification

Nikola Milo-
sevic , Ali
Dehghantanha
, Kim-Kwang
Raymond Choo
2017

Present two machine learning
aided ap- proaches for static anal-
ysis of Android malware. The
first approach is based on per-
missions and the other is based
on source code analysis utiliz-
ing a bag-of-words representation
model.

Static tech-
niques, LR
algorithm

4 Detection of
Transformed
Malwares using
Permission Flow
Graphs

Ridhima Seth
and Rishabh
Kaushal 2017

A lightweight static Permission
Flow Graph (PFG) based ap-
proach to detect malware even
when they have been transformed
(obfuscated).

Static tech-
niques, Per-
mission flow
graphs

5 Machine
learning-assisted
signature and
heuristic-based
detection of
malwares in
Android devices

Zahoor-Ur
Rehman , Sidra
Nasim Khan ,
Khan Muham-
mad , Jong
Weon Lee , ,
Zhihan Lv ,
Sung Wook Baik
, Peer Azmat
Shah , Khalid
Awan , Irfan
Mehmood 2018

An efficient hybrid framework
is pre- sented for detection
of malware in Android Apps.
The proposed framework consid-
ers both signature and heuristic-
based analysis for Android Apps.
We have reverse engineered the
Android Apps to extract mani-
fest files, and binaries, and em-
ployed state-of-the-art ma- chine
learning algorithms to efficiently
detect malwares.

Hybrid frame-
work, LR
classifier, Naive
Bayes

MIT, Pune . 11 Dept. of Computer Engg.



Chapter 3

RELATED WORKS

Every day, approximately 1.3 million Android devices are being activated according to

Google Chairmen Erich Schmidt . Android provides their users a rich media support,

optimized graphic system and powerful browser. Apart from this, Android OS also

provides support for 24 h GPS tracking, video camera, compass and 3D-accelerometer.

It yields rich Application Pro- gram Interfaces (APIs) for location and map functions.

Users can easily control or process Google map on Android devices and access location

at low cost. Due to the high usage of Smartphone’s, every individual user is exposed

to the threat of unwanted and malicious applications. Malware authors are busy in

writing malicious applications with an increase in the number of Android users. The

recent research illustrated that Android Apps are repacked by malicious ELF binaries

for hid- ing calls to external binaries. Similarly, researchers are trying to find out

the best malware detection methods like memory forensic technique and secure data

communication methods that can prevent Android devices. Whenever a user wants

to install an application from play store, Application is downloaded first and then

asked for installation after accepting all permissions. User can’t install an application

without accepting all permissions required by developer (hacker). Hackers usually ask

for permission through which they can access user’s camera, audio, text messages and

all other private information. Users are uninformed of this purpose of hackers and

they accept all permissions to install application. In this way, they become victim of

hacker’s attack. Moreover, hackers can make changes in constant strings to attack

on mobile devices . Several techniques for detecting malware have been proposed in

literature which can be divided into two broad classes: Static and Dynamic Analysis-

based methods. Dynamic Analysis also known as behavioural-based analysis collects

informa- tion from the OS at runtime such as system calls, network access and files

and memory modifications. Hybrid apps consist of both native apps, and web apps.

Like native apps, they live in an app store and can take advantage of the many de- vice

features available. Like web apps, they rely on HTML being rendered in a browser,

with the caveat that the browser is embedded within the app. Often, companies

12
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build hybrid apps as wrappers for an existing web page. In that way, they hope to

get a presence in the app store without spending significant effort f or developing

a different app. Hybrid apps are also popular because they allow cross platform

development. Thus significantly reduce development costs: that is, the same HTML

code components can be reused on different mobile operating systems. Tools such

as PhoneGap and Sencha Touch allow people to design and code across platforms,

using the power of HTML. However, developers rush to exploit offthe shelf libraries

in hybrid apps. Great new features are freely available without fully understanding,

addressing, the security implications, increasing the chances of malware penetration

in mobile devices. In Static Analysis (signature-based analysis), information about

the App and its expected behaviour consists of explicit and implicit observations in

its binary/source code. Static Analysis methods are fast and effective, but various

techniques can be used to dodge Static Analysis and thus render their ability to

cope with polymorphic malware. There are number of signature and behaviour-based

detection tools available on play store for detection of malicious Android applications.

Recent study has shown that signature based malware detection tools works till a

certain level. They become ineffective when malware authors make changes in apps.

Such type of signature-based tools and anti-viruses could not provide protection to

Android users. Since Android is an open source and extensible platform, it allows to

extract as many features as we would like. This enables to provide richer detection

capabilities, not relying merely on the standard call records or power consumption

pat- terns. The proposed method is novel in the context that it evaluates the ability

to detect malicious activity on an Android device by employing Machine Learning

algorithms using a variety of monitored features like permissions, providers, intent

filters, process name and constant strings extracted from Android Apps. The proposed

malware detection technique can also be used on diverse environments like BlackBerry,

iOS etc. This work aims to find solution for following challenges:

• How to develop a malware detection system that can adapt to any kind of

malware?

• How to detect malware before actual installation?

• How to scrutinize hybrid mobile apps for possible malware threat?

• How to warn Android users about malware after a download?

• Why extracting combined features of Android Apps is better way to detect

malware than signature based and behaviour- based techniques?

Selection of good features from Android applications and their combination can lead

to a robust malware detection system. Most of the malware detection techniques with

MIT, Pune . 13 Dept. of Computer Engg.
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dynamic analysis detect malware after installation of an Android App which can affect

devices. To install an application, user has to allow all malicious permissions. It is

not a secure way that a malware detection technique identifies malware after a device

has been affected. We performed static analysis in the proposed malware detection

technique to detect malware after downloading application. In this way, security of

Smartphone does not compromise. When a user downloads an App from play store

and identified malicious by the proposed malware detection technique, Apps will be

prompted by detection system and user will be informed about malicious app before

installation.[14]
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Chapter 4

SIGNATURE-BASED METHODS

FOR MALWARE DETECTION

Figure 4.1: Basic process of Static method of detection

To detect Android malware most static approaches use requested permissions as

the backbone of analysis. This study aims to learn if parsing only the Android man-

ifest file is enough information to classify an app as malicious or benign. Another

purpose of the study is to discern if permission sets or app intent filters are more

effective indicators of malware. Finally, the study compares several different machine

learning algorithms to find one which creates the most effective classifier. Android

apps are stored as .apk files, which were decompiled using the open source apktool.

For each app the manifest file, a .xml file, was further decomposed into permissions

and intent filters using Python’s ElementTree XML API. Information was stored in a

matrix of indicator variables with each row representing an Android app and columns
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representing what features it declares. The 183 features extracted were from three

categories:

• Requested Permissions: Android apps must request user consent to access

functionalities such as location, camera, or contacts. They must also list all

their requests in the manifest file. A complete list of Android permissions was

acquired from the Android developer website. This accounted for 154 features.

• Declared permissions:Android apps can create their own permissions, which

can be used as an extra security layer against other apps accessing their data.

A single variable was marked true if an app created any of its own permissions.

• Intent Filters: Intents are used to request actions from other app components.

Apps can send implicit intents to other apps requesting information. Intent

filters tell the system which implicit intents the app can handle and what overall

phone states the app wants to know. A list of common intent filters was acquired

from the Android developer website. This accounted for 28 features.[4]

4.1 PERMISSION-BASED ANALYSIS

Since Android security model is based on app permissions, we use permission names

as features to build a machine learning model. Every app has to acquire the required

privileges to access the different phone features. During an app installation, a user is

asked whether to grant the app access to the permissions requested. Malicious apps

usually require certain permissions. For example, in order to access and exfiltrate

sensitive information from the SD card, a malicious app would require access to both

the SD card and Internet. Our approach is to model combinations of the Android

permissions requested by such malicious apps. We propose an approach that uses the

appearance of specific permissions as features for a machine learning algorithm. In

this approach, we first extract the permissions from our dataset and create a model.

For training, we use Weka toolkit and evaluate several machine learning algorithms,

including SVM, Naive Bayes, C4.5 Decision trees, JRIP and AdaBoost. Classification

algorithms we chose differ in their underlying concept. Support Vector Machines is a

non-probabilistic supervised machine learning binary classification algorithm. SVM

is capable of nonlinear classification that maps inputs into high di- mensional feature

space. C4.5 decision tree is a statistical classifier that builds a decision tree based

on information entropy. Each node of the tree algorithm selects a feature and splits

its sets of samples into subsets until classes can be inferred. Random forest is an en-

semble classification algorithm that combines a number of decision trees and returns

the mode of individual decisions by decision trees. Naive Bayes is a simple proba-

bilistic classifier that is based on applying Bayes theorem with strong independence
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assumption between features. Bayesian network is a probabilistic graphical model

that represents a set of random variables and their inter-dependencies in directed

acyclic graph. JRIP is a propositional rule learner that tries every attribute with

every possible value and adds a rule which results to the greatest information gain.

Logistic regression is a statistical regression model where dependent variable is used

to estimate the probability of binary response based on multiple features. AdaBoost

is a meta algorithm that can be used with many other algorithms to improve their

performance by combining their outputs into a weighted sum which represents the

final output. We then used the modified Weka 3.6.6 library 1 for Android to develop

the OWASP Seraphimdroid Android app, which is using support vector machines with

sequential minimal optimization model. 2 We also apply several clustering techniques

in order to evaluate the performance of our unsupervised and supervised learning

algorithms. Training, testing and evaluation of our model are performed using Weka

Toolkit by applying the Far- thest First, Simple K-means and Expectation maximiza-

tion (EM) algorithms. Simple K-means is a clustering algorithm where samples are

clustered into n clusters, in which each sample belongs to a cluster with the nearest

mean. Farthest First al- gorithm uses farthest-first traversal to find k clusters that

minimize the maximum diameter of a cluster, and Expectation maximization (EM)

assigns a probability distribution to each instance which indicates the probability of

it belonging to each of the clusters.[4]

4.2 SOURCECODE-BASED ANALYSIS

The second approach is a static analysis of the app’s source code. Malicious codes

generally use a combination of services, methods, and API calls in a way that is not

usual for non-malicious app . Machine learning algorithms are capable of learning

common combinations of malware services, API and system calls to distinguish them

from non-malicious apps. In this approach, Android apps are first decompiled and

then a text mining classification based on bag-of-words tech- nique is used to train the

model. Bag-of-words technique has already showed promising results for classification

of harmful apps on personal computers . Decompiling Android apps to conduct static

code analysis involves several steps. First, it is necessary to extract the Dalvik Exe-

cutable file (dex file) from the Android application package (APK file). The second

step is to transform the Dalvik Executable file into a Java archive using the dex2jar

tool. 3 Afterwards, we extract all .class files from the Java archive and utilize Procyon

Java decompiler (version 0.5.29) to decompile .class files and create .java files. Then,

we merge all Java source code files of the same app into one large source file for further

processing. Since Java and natural language text have some degree of similarity, we

apply the technique used in natural language processing, known as “a bag-of-words”.
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In this technique, the text, or Java source code in our case, is represented as a bag

or set of words which disregards the grammar or word order. The model takes into

account all words that appear in the code. Our approach considers the whole code in-

cluding import statements, method calls, function arguments, and instructions. The

source code obtained in the previous step is then tokenized into unigrams that are

used as a bag-of-words. We use several machine learning algorithms for classifications,

namely: C4.5 decision trees (in Weka toolkit, it is known as J48), Naive Bayes, Sup-

port Vector Machines with Sequential Minimal Optimization, Random Forests, JRIP,

Logistic Regression and AdaBoostM1 with SVM base. We performed our training,

testing and evaluation using Weka Toolkit. For source code analysis, we also utilized

ensemble learning with combinations of three and five algorithms and majority voting

decision system. Ensemble learning combines multiple machine learning algorithms

over the same input, in hope to improve the classification performance. The number

of algorithms is chosen in a way that system is able to unambiguously choose the

output class based on majority of votes.[4]

Figure 4.2: Flow diagram of process

We also experiment with clustering on the source code. Clustering algorithms we

use include the Farthest First, Simple K-means and Expectation maximization (EM).

A flow diagram of the process is presented in Fig. 1 .

4.3 EVALUATION AND DISCUSSION

Evaluated the performance of the approaches using 10-fold cross validation. In 10-fold

cross validation, the original sample was randomly partitioned into ten equal sized
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sub-samples. A single sub-sample was retained for the testing, while the remaining

nine were used for training. The process was repeated ten times, and each time using

a different sub-sample for testing. The results were then averaged to produce a single

estimation. The main advantage of this method is that all samples were used once only

for validation. The metrics we used for the evaluation of the algorithms are precision,

recall and F-measure, which are widely used in the text mining and machine learning

communities. Classified items can be true positive (TP –items correctly labeled as

belonging to the class), false positive (FP - items incorrectly labeled as belonging to

a certain class), false negative (FN - items incorrectly labeled as not belonging to

a certain class), and true negative (TN - items correctly labelled as not belonging

to a certain class). Given the number of true positives and false negatives, recall is

calculated using the following formula:

Recall = TP/(TP + FN)

The recall is sometimes referred to as “sensitivity”or the “true positive rate”.

Given the number of true positive and false positive classified items, precision (also

known as “positive predictive rate”) is calculated as follows:

Precision = TP/(TP + FP )

The measure that combines precision and recall is known as F-measure, given as:

F = ((1 +B2) ∗Recall ∗ Precision)/(B2 ∗ (Precision+Recall))

, where B indicates the relative value of precision. A value of = 1 (which is usually

used) indicates the equal value of recall and precision. A lower value indicates a larger

emphasis on precision and a higher value indicates a larger emphasis on recall.

4.3.1 Evaluation of permission-based classification:

Table 4.1: Permission based classification

Evaluation results of permission-based classification using single machine learning algorithms.
Algorithm Precision Recall F-Score
Logistic regression 0 .823 0 .822 0 .821

The evaluation of machine learning algorithms performing permission-based classi-

fication is presented in Table 1 . As observed from Table 1 , support vector machines

with sequential minimal optimization has the best performance with a F-measure

value of 0.879. In other words, this algorithm correctly classified 87.9percent of test
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instances in 10-fold cross validation. The algorithm is also efficient, in terms of speed,

as it took only 0.04 s to train the model. Instances were also classified faster; thus,

making this approach suitable for real-time classification of (malicious) apps. Details

for the implementation of LR classifier is given in the table.[4]

Table 4.2: Sourcecode based classification

Evaluation results of Sourcecode-based classification using single machine learning algorithms.
Algorithm Precision Recall F-Score
Logistic regression 0 .935 0 .935 0 .935

4.3.2 Evaluation of Source-Code based Classification:

Of the 400 apps in the data set, unable to decompile 32 of them (10 non-malicious

and 22 malicious), perhaps due to code encryption and obfuscation or instability of

our Java decompiler. Nevertheless, the remaining 368 source files were sufficient to

train a good model. The evaluation of the classification for the analysis of the app’s

source code is presented in Table 4 . As Over 90percent of instances were correctly

classified using LR. The high accuracy of source code-based classification reveals that

the machine can infer app behavior from its source code. Even though the bag-of-

words model disregards grammar and word order in text (in our context, the source

code), it is possible to train a successful machine learning model that is able to

distinguish malicious app from non-malicious app. Also, with the machine learning-

based source code analysis, it is possible to analyze whether an Android package (apk)

is malicious in less than 10 s, which is significantly faster than a human analyst.[4]
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DETECTION OF

TRANSFORMED MALWARES

USING PERMISSION FLOW

GRAPHS

With growing popularity of Android, it’s attack surface has also increased. Prevalence

of third party android marketplaces gives attackers an opportunity to plant their ma-

licious apps in the mobile eco-system. To evade signature based detection, attackers

often transform their malware, for instance, by introducing code level changes. Here

we see a lightweight static Permission Flow Graph (PFG) based approach to detect

malware even when they have been transformed (obfuscated). A number of techniques

based on behavioral analysis have also been proposed in the past; however our inter-

est lies in leveraging the permission framework alone to detect malware variants and

transformations without considering behavioral aspects of a malware. The proposed

approach constructs Permission Flow Graph (PFG) for an Android App. Trans-

formations performed at code level, often result in changing control flow, however,

most of the time, the permission flow remains invariant. As a consequences, PFGs

of transformed malware and non-transformed malware remain structurally similar as

shown in this paper using state-of-theart graph similarity algorithm. Furthermore,

propose graph based similarity metrics at both edge level and vertex level in order

to bring forth the structural similarity of the two PFGs being compared. validate

the proposed methodology through machine learning algorithms. Results prove that

our approach is successfully able to group together Android malware and its variants

(transformations) together in the same cluster. Further, we demonstrate that our

proposed approach is able to detect transformed malware with a detection accuracy

of 98.26percent, thereby ensuring that malicious Apps can be detected even after
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transformations.[8]

Figure 5.1: Trends diagram

This trend means that attackers are not investing their efforts in developed new

malwares from scratch but they are rather modifying the existing malware families

to create malware variants. Although, there exist an official Android market (Google

Play store), however, at the same time a large number of third party marketplaces

have also sprung up which have given the attackers an opportunity to host such mal-

ware variants.4 For instance, in a report published by SC Media claims that Turkish

Android App store spread malware.5 Despite advisories to not download apps from

third party App Stores6, users do end up downloading apps from third party stores.

5.1 METHODOLOGY

The approach involves construction of Permission Flow Graphs (PFGs) and leverages

from the concept of graph similarity to create the feature vectors for machine learning

algorithms. PFGs represent the sequence in which the various permissions are used

in a mobile application. Attacker, while making transformations, may or may not

affect the flow of permissions. However, as it gets demonstrated through our work,

the resulting PFG of the transformed malware still remains structurally similar to

that of the original malware, even if not an exact match.[8]

5.1.1 Permission Flow-Graph Construction:

The permission framework in Android has been extensively studied, in fact the set of

permissions requested by an application have been extensively used as feature vectors

in prior work. Our work differs in the fact that we also take into consideration the

transformation attacks, thereby capturing the variants of a given malware. A lot of
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prior works have constructed API graphs in their approach, however, API graphs

are typically large in size thereby increasing computational costs. Instead, we pre-

process and convert the API graphs into Permission Control Graph as explained in

this section. We begin by defining the concept of Permission Flow Graph (PFG) as

below.

• Definition

Permission Flow Graph (PFG) is a directed graph that can be defined as an

ordered pair G = (V,E) where, V is set of permission nodes and E is a set of

directed permission edges. Each edge (pi, pj ) implies that permission pj is

requested after pi as per program control flow.

Given an Android application, first an API level Control Flow Graph (CFG),

referred as (Ax), needs to be constructed. CFG represents the control flow of APIs

used by the application as depicted in Figure. Each node of an API control flow graph

represents an API call, and an edge between node i and node j represents the control

flow between the two API calls. The Android permission framework is such that

each API call may or may not require one or more permissions. Hence a one to many

mapping exists between an API call and an Android Permission. Using the API graph

(Ax), we construct, its corresponding Permission Flow Graph (PFG) (Px). Thus for

each API graph Ax, all nodes that require a certain permission need to be extracted,

and depending on the control flow between them, a Permission Flow graph Px is

constructed. For each node ai in Ax, a set of nodes (Pi, Pi1, Pi2,. Pik) are present in

the PFG, where k is the number of permissions required by API call ai. The conversion

between and API graph and Control Flow Graph can be seen in Figure. Once the

Permission Flow Graphs (PFGs) for the Android Apps are generated and stored, a

similarity feature vector is created for each record in the training data using Edge and

Vertex similarity metrics. This is a one dimensional feature vector with N elements,

where N is the number of Android Apps under consideration. Each element of the

feature vector contains a similarity score, which represents the degree of similarity of

the Permission graph of this application with respect to another application in our

database. The ith element of this feature vector represents the similarity score of PFG

of Android App with respect to PFG of ith Android App in our malware database.

Thus the structural similarity between applications in the context of the sequence

in which the two applications request permissions is incorporated in these similarity

feature vectors. The metrics used for calculating the similarity score are such that

they take into account the partial similarity between graphs as well and not just the

exact match. Thus these feature vectors would capture structural similarities between

malwares and their transformed variants.[8]
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5.1.2 Proposed solution pipeline

A broad pipeline of our approach is shown in Figure which depicts following key

components:-

• Android App: The input to the proposed system is an Android App which needs

to be checked whether it is malicious or not.

• API Generator: Converts the input Android App into its corresponding call

flow graph using the API calls.

• Constructing PFG: Next step involves converting the API call graph into its

corresponding permission flow graph.

• Feature Calculation: Two key features namely edge level metric (ELM) and

vertex level metric (VLM) are computed at this stage.

• Clustering / Classification: Finally the input Android App is tested whether it

belongs to an existing malware family or whether it is malicious or not.

Figure 5.2: Proposed solution pipeline

5.1.3 Graph Similarity Metrics

Given two graphs G1 and G2, the two key metrics used in our work are edge level

metric (ELM) and vertex level metric (VLM), computed as below.

ELM = numcommonedges(G1, G2)edges(G1) + edges(G2)(1)

V LM is similarity score between each vertex in G1 and G2, which is computed as per

the Similarity Flooding algorithm. Briefly, two vertices are similar if their permission

labels as well as their neighbors are similar. Using the Similarity flooding algorithm

a MXN matrix (Similarity-matrix) is constructed containing the similarity score of

node i in G1 with node j in G2, where M and N are the total number of nodes in G1

and G2 respectively. Using the pseudo code presented in Algorithm 1, we reduce this

MXN matrix to a MX1 matrix. Each element in this matrix contains the similarity

score of a node in graph G1 to its most similar counterpart in graph G2.
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Figure 5.3: Permission flow graphs

Figure 5.4: Algorithm for PFG

5.2 RESULTS

5.2.1 Clustering Results

LR clustering was applied to group the different malwares, detailed findings are pre-

sented

• DroidKungFu: Is a Malware that affects Android OS and it targets the mobile

platform in China. First piece of malware found in the Android Market is in

March 2011.

• DroidDream: Is a mobile botnet type of malware that appeared in spring

2011. The DroidDream Trojan gained root access to Google Android mobile
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Table 5.1: Clustering accuracy using various similarity metrics

CLUSTERING ACCURACY USING VARIOUS SIMILARITY METRICS
Dataset Edge Metric Vertex Metric Combination
AnserverBot 100 100 100
DroidKungfu 91.42 77.14 100
ADRD 75 75 75
DroidDream 66.66 86.66 60
GoldDream 100 38.46 61.54

devices in order to access unique identification information for the phone.

• Android.Golddream: Is a Trojan horse that steals information from Android

devices.

Android package file: This Trojan disguises itself on certain marketplaces as

game software, but it comes bundled with a Trojan.

• AnserverBot: One of the most sophisticated bot program infecting Android

devices. This particular bot piggybacks on legitimate apps and communicates

with remote CandC servers for further instructions. Based on our current inves-

tigation, AnserverBot is being injected into a number of (20+) legitimate apps,

which are then distributed in alternative Android markets in China. Differ-

ent from earlier ones with bot capabilities such as Pjapps and BaseBridge, this

bot program exploits several techniques, including deep code obfuscating and

(Plankton-like) dynamical code loading to thwart reverse engineering efforts as

well as anti-tampering to protect itself. To the best of our knowledge, this is

indeed one of the most sophisticated bot program on Android we have ever seen

to date.
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CONCLUSION

Development of a defect prediction model helps in ascertaining software quality at-

tributes and focused use of constraint resources.They also guide researchers and prac-

titioners to perform pre-ventive actions in the early phases of software development

and commit themselves for creation of better quality software. In this work, we

not only conduct an extensive empirical experimentation on publicaly available ap-

plication packages of Android software systems but also provide a repeatable and

pragmatic approach to achieve such models. Specifically, the main contributions of

the paper are: (i) create defect prediction models using various ML techniques on col-

lected multiple data sets from the Google code repository for the Android platform,

(ii) pre-process the data using the attribute reduction techniques, (iii) empirically

validate the constructed models on various releases of the application packages of An-

droid data sets in order to obtained generalized results, (iv)perform statistical tests

to evaluate the significance of the obtained results and, (v) analyze the outcomes to

deduce meaningful and generalized conclusions.

The paper focuses on the various ways of detecting malware on android platform

in detail.

6.0.1 Future scope

Future research includes the evaluation of the proposed approaches using a signifi-

cantly bigger labeled balanced data sets and utilizing online learning. Another re-

search focus is combining static and dynamic software analysis in which multiple

machine learning classifiers are applied to analyze both source code and dynamic

features of apps in run-time.
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